# 2.5 GHz clocked quantum key distribution over **379 km**

Alberto Boaron,<sup>1</sup> Gianluca Boso,<sup>1</sup> Davide Rusca,<sup>1</sup> Cédric Vulliez,<sup>1</sup> Claire Autebert,<sup>1</sup> Misael Caloz,<sup>1</sup> Matthieu Perrenoud, Gaëtan Gras,<sup>1</sup> Félix Bussières,<sup>1</sup> Ming-Jun Li,<sup>2</sup> Daniel Nolan,<sup>2</sup> Nicolas Gisin,<sup>1</sup> Anthony Martin,<sup>1</sup> and Hugo Zbinden<sup>1</sup>

<sup>1</sup> Group of Applied Physics, University of Geneva, Switzerland

<sup>2</sup> Corning Incorporated, United States

QCrypt2018 | 29 august 2018 | ArXiv 1807.03222





Journal of cryptology 5, 3 (1992)



## What does ultimately limit the transmission distance in QKD ?

#### the acquisition time



# Protocol

- Time-bin encoding
- Decoy-state method

| basis, bit   | state       | $\mu_1$ | $\mu_2$ | $\mu_3$ |  |
|--------------|-------------|---------|---------|---------|--|
| <b>Z</b> , 0 | 0 angle     |         |         |         |  |
| <b>Z</b> , 1 | 1 angle     |         |         |         |  |
| X, 0         | $ +\rangle$ |         |         |         |  |
| <b>X</b> , 1 | $ -\rangle$ |         |         |         |  |

Phys. Rev. A72, 012326 (2005)



### 1-decoy versus 2-decoy

1-decoy (i.e. two levels in total) is more efficient for most experimental settings !



Poster: D. Rusca et al. *The 1-decoy state protocol: the best choice for practical QKD* Paper: Appl. Phys. Lett. 112, 171104 (2018)

DE GENÈVE

# Protocol

- Time-bin encoding
- Decoy-state method



Phys. Rev. A 74, 042342 (2006)



4 states, 4 outcomes ↓ 3 states, 3 outcomes

Security proof available on the ArXiv | 1808.08259



# 1. all fibred high repetition rate source

- Phase-randomized DFB laser:
  - Repetition rate: 2.5 GHz
  - Pulse duration: 30 ps
- High speed integrated intensity modulator: 5 GHz





→ requires dispersion compensation fibre: -140 ps/nm/km

CORNING



### 2. quantum channel: ultra low-loss fibres

Corning ULL-28<sup>®</sup> ultra low loss fibre: 0.16 dB/km Attenuation including connectors and splices: 0.17 dB/km







# 3. detectors

Superconducting nanowire single-photon detectors Amorphous molybdenum silicide Temperature: 0.8 K

Dark counts: < 0.3 count/s Efficiency: 50% (at low dark counts rates) Timing jitter: 30 ps







### QBER and stability over time

Channel length fluctuations Interferometers phase fluctuations





FM

FM

Bob

BS

SNSPDs



| length          | $\operatorname{attn}$ | $\mu_1$ | $\mu_2$ | block size         | block time      | QBER Z | $\phi_{\sf Z}$ | RKR             | SKR              |
|-----------------|-----------------------|---------|---------|--------------------|-----------------|--------|----------------|-----------------|------------------|
| $(\mathrm{km})$ | (dB)                  |         |         |                    | (h)             | (%)    | (%)            | (bps)           | (bps)            |
| 251.7           | 42.7                  | 0.49    | 0.18    | $8.2 \cdot 10^6$   | 0.20            | 0.5    | 2.2            | $12 \cdot 10^3$ | $4.9 \cdot 10^3$ |
| 302.1           | 51.3                  | 0.48    | 0.18    | $8.2\cdot 10^6$    | 1.17            | 0.4    | 3.7            | $1.9\cdot 10^3$ | $0.79\cdot 10^3$ |
| 354.5           | 60.6                  | 0.35    | 0.15    | $6.2\cdot 10^6$    | 14.8            | 0.7    | 1.8            | 117             | 62               |
| 404.9           | 69.3                  | 0.35    | 0.15    | $4.1 \cdot 10^{5}$ | 6.67            | 1.0    | 4.3            | 17              | 6.5              |
| 421.1           | 71.9                  | 0.30    | 0.13    | $2.0 \cdot 10^5$   | $24.2 (12.7^*)$ | 2.1    | 12.8           | $2.3 (4.5^*)$   | $0.25 (0.49^*)$  |



### How close are we from an ideal system ?



(1) BB84, Fröhlich et al., Optica 4, 163 (2017)
(2) COW, Korzh et al., Nat. Phot. 9, 163 (2015)
(3) MDI, Yin et al. Phys. Rev. Lett. 117, 190501 (2016)

Ideal system

- BB84 with decoy state
- 2.5 GHz repetition rate
- No detector noise
- 100% detection efficiency
- Same block size than exp. points



# Increasing the repetition rate ?

• Limits of the modulation capability

Classical communications Max 40 GHz repetition rate Only 3 dB modulation required

QKD Need for phase-randomized pulses High extinction



# Ultimate limit

- BB84 with decoy state
- 40 GHz repetition rate
- o Hz dark counts
- 100% detection efficiency
- 1 day acquisition time





# Conclusion

#### A system mainly based on of-the-shelf components

- A QKD transmitter based on commercially available components combined with some in-house-made electronics
- Commercially available ultra low-loss fibres
- In-house-made SNSPDs (but almost commercially available)

Transmission of secret keys over 421 km of optical fibre



#### Thank you for you attention !

#### Quantum technologies group | leader: Hugo Zbinden



